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LE’lTER TO THE EDITOR 

Surface and edge exponents for the spreading of 3~ percolation 

Peter Grassberger 
Physics Department, University of Wuppertal, D-56 Wuppertal 1, Gauss-Strasse 20, West 
Germany 

Received 9 December 1985 

Abstract. Monte Carlo results are presented for the spreading of 3~ percolation, where 
the seed consists of an (infinite) straight line. This line can either be in the bulk of the 
material into which spreading is possible, on a planar surface of the material, or on a 
rectangular edge. In the last two cases, spreading occurs only into angular regions with 
180” (resp 90”). While the mean distance grows at p = pc  in all three cases with the same 
exponent, the average number of growth sites grows (resp vanishes) in all three cases with 
different exponents. In particular, this implies that at p = p c ,  the sites on the surface of a 
big cube belonging to the maximal cluster within that cube have fractal dimension <l.  

One particular way of obtaining large percolation clusters consists in letting them grow 
or ‘spread’ from some seed, by ‘infecting’ in each time step all infectable neighbours, 
in the same way as an epidemic with a short infectious period spreads in a population, 
or a forest fire in a forest [l-31. 

Apart from giving results on the time evolution, which is interesting in itself, this 
also seems to be one of the most efficient ways to study numerically geometrical aspects 
of ordinary (time-independent) percolation. Indeed, the critical exponents and critical 
values of p obtained in [4] for d = 3 and d = 4 with relatively modest effort are among 
the most precise ones obtainable today. 

In [4], we studied bond percolation by starting with all sites on an entire hyperplane 
wetted (or ‘infected’) at time t = 0, such that the mean spreading is only in the direction 
perpendicular to that hyperplane. Numerically, this is advantageous over spreading 
from a single point: in the latter case, the average number of growth sites (i.e. sites 
infectious at the given time) grows very fast. Thus most of the time in a simulation is 
spent at late times, while fluctuations in the number of growth sites and in their average 
distance from the seed are dominated by what happened at earlier times. Also, when 
starting from a hypersurface, one can simulate much longer times on a lattice of given 
size, since the spreading is essentially in only one direction. 

Unfortunately, however, starting from a hypersurface also has a drawback. In both 
three and four dimensions, the average number of growth sites now decreases strongly, 
such that most of the time is spent at early times, and fluctuations become large at 
late times. It would thus be advantageous if one had a way to grow the clusters such 
that the average number of growth sites stays roughly constant. 

At least in three dimensions, this is the case for spreading from a straight line. 
Therefore, we shall present in this letter results from simulations of bond percolation 
on simple cubic lattices, with the seed being a straight line. In principle, this line 
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should be infinitely long. We made sure that it was always much longer (by a factor 
of at least 2.3) than the distance of spreading perpendicular to the line. 

In addition to placing the seed line into the middle of the lattice (called case I in 
the following), we also made runs where the line was on its boundary. When putting 
it in the middle of a surface, spreading occurred into half-space (‘case 11’). When 
putting it on an edge of the lattice, spreading was allowed only into an angular region 
with a 90” angle (‘case 111’). 

In all three cases, we can make a scaling ansatz for the density of growth sites 
formally identical to the ansatz made in [2]: 

p(r ,  t )  = t -6F(er1’u,  etl”i) with E = p - p c .  (1) 

The critical exponents v and Y, should be independent of the seed (they depend only 
on the dimension of the lattice). On the other hand, the scaling function F and the 
exponent S will in general depend on the seed. 

For a point seed, we must require that the density + ( r ,  t )  of wetted sites, given by 

behaves for p > pc and for r, t + 00 like E ~ ~ .  One factor E’ comes from the probability 
that the seed is in the infinite cluster, the other from the probability that the point at 
r is. This gives then [2] 

apoint seed = (2P / v t )  -t- 1 * (3) 

For a hyperplane seed, the seed contains points in the infinite cluster with probability 
one, and an analogous consideration [2] gives 

Shyperplane = ( P /  vr) + 1 (4) 

When applying these considerations to starting from a line seed, we have to know 
the probability that the seed contains points of the infinite cluster. In case I, there is 
no problem: since the infinite cluster has fractal codimension d-dF=0.49 [4], and 
thus a line will cut it with probability 1. We then obtain 

& a x  I = Shyperplane ( 5 )  

In the other two cases, we cannot use this argument. Consider the maximal cluster 
in a large cube, after cutting off all tangles which are connected to it via paths outside 
the cube (see figure 1). The intersection between the surface of the cube and this 
truncated cluster is a set of fractal dimension d,(surface). One might suspect that 
d,(surface) = dF- 1, since cutting a fractal by a hypersurface reduces its dimension by 
1. But this is not true due to the omission of the tangles indicated in figure 1. If 
dF(surface)> 1, a line will cut it with probability 1, and S for case I1 is also given by 
( 5 ) .  Otherwise, it will be larger for the same reason that Shyperplane is larger than Spoint seed. 

The same considerations hold for case 111, and we can only say that 

(6) 

Thus we must use our Monte Carlo simulations to decide this problem. For each 
seed and for each value of p, we made around 5000 independent runs. The number 
of time steps per run can be read off from the figures. The sizes of the lattices were 
180 x 170 x 170 (case l ) ,  240 x 210 x 106 (case 11) and 300 x 136 x 136 (case 111), with 

&,se I I I  3 &as, 11 5 &as, I *  
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Figure 1. When considering only a finite part of a lattice (here two-dimensional), we cut 
off from the maximal cluster (shaded area) tangles which are connected to it only via 
bonds outside the considered part. 

the seed always parallel to the x direction. Total CPU time spent was 30 h on a CYBER 
1701 175. 

In figure 2, we show the average distances of growth sites from the seed as a 
function of time, for fixed p = p c .  As in the case of spreading from a hypersurface 
[4], we found that these data do not depend strongly on p. In figures 3-5, we show 

t 

Figure 2. Average distance of growth sites for 3D ,bond percolation at p = 0.2488 plotted 
against time in a doubly logarithmic plot. The seed was a line through the middle of the 
lattice (O), on a surface (A), resp on an edge (0). 
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Figure 3. Average number of growth sites against time on a log-log plot, for line seeds 
passing through the centre of the lattice, and for various values of p .  

the average numbers N of growth sites, divided by the length of the seeds. We find 
there a very strong dependence on p and also on the kind of seed. From the linearity 
of the curves in figures 3-5 and from more sophisticated analyses [4] we find the 
critical value of p to be at -0.2488. Together with the somewhat lower but compatible 
data of [4], this gives 

pc = 0.248 75 *O.OOO 13. (7) 

1 

Figure 4. Same as figure 3, but for line seeds on a surface of the lattice. 
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Figure 5. Same as figure 3, but for line seeds on an edge of the lattice. 

From (l), we expect at p = p c  the scaling laws [4] 

r -  t*' z, = u / u ,  (8) 

N - t - 5  z2 = 6 - (2u/ U,). (9) 

As we see in the data, the critical exponent of r is indeed independent of the seed, 
and agrees well with that obtained in [4] (best overall estimate: z1 =0.728*0.006). 
For the exponent of N, we find in case I 

z2 = 1 + [( /.3 - 2u)/ U,] = -0.1 1 f 0.01. (10) 
Again this is slightly but not seriously off the value obtained from [4]. For instance, 
we obtain 7 = 2/3/ U - 1 = -0.04 f 0.04 as our new best estimate, instead of -0.02 * 0.04 
in [4]. 

From figure 5, we see immediately that in case I11 we get a different exponent z2, 
and thus a different S. The situation is less clear in case I1 (figure 4), due to very 
strong corrections to scaling. Yet it seems that the same value of zz as in case I can 
be excluded. According to the above discussion, this shows that the largest clusters 
in the considered lattices cut the surface in sets of dimension less than 1. 

More colourfully, one might say that it is impossible to hold a piece of nearly 
critical Swiss cheese by holding all points on its edge: with probability one, the edges 
does not contain any point of the infinite bulk piece, and the cheese would fall down 
(although one could hold it with a needle passing through it!). 

Coming back from Swiss cheese to numbers, we find 

22  = 0.02+:02 case I1 

~2 = 0.30 * 0.02 case 111. 

It would be interesting to have predictions for these exponents from field theory or 
from some other source, but at present we do not have any such independent estimates. 
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We also do not know how these exponents are related to other surface or edge exponents 
like Psurface ( Pedge) which describe how the probability that a surface (edge) site belongs 
to the maximal cluster, for p > p c .  
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